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Irreducible representations of the symmetry groups of 
polymers: IV. The relevant subset of a line group 

Ivan BoioviE 
Department of Physics, Faculty of Science, The University, PO Box 550, 11001 Belgrade, 
Yugoslavia 

Received 26 January 1982 

Abstract. The irreducible representations of the line groups (constructed in the preceding 
papers of this series) provide a useful labelling scheme for electron energy bands of 
stereo-regular polymers and quasi one-dimensional solids. To implant automatic sym- 
metry assignation into a band-structure computing routine one needs a method of dealing 
with representations of line groups, which are of infinite order. We demonstrate here 
that the set K of coset representatives of the translational subgroup T of the line group 
L-which has a finite (and usually quite small) number of elements-contains all the 
relevant information. Dealing only with K, one can complete the symmetry assignation, 
decompose a reducible representation and derive selection rules. 

1. Introduction 

Fundamental and applicative interest in electronic properties of polymers and quasi 
one-dimensional solids motivated extensive band-structure computations on chain-like 
atomic models (Andrk et a1 1980). The spatial symmetry groups of physical objects 
periodic along a line are line groups (Vainshtein 1966, VujiEiE et a1 1977, to be 
referred to as LG); hence, energy bands of a polymer can be labelled by unitary 
irreducible representations (reps) of the corresponding line group. Utilising these reps 
one can derive selection rules, compatibility relations (BoioviE et a1 1981) etc. 

For a periodic array of atoms, the state space V is a direct sum of subspaces vk 
( - r / a  < k s r / a ,  a being the repeat length) belonging to the reps dk of the one- 
dimensional translational subgroup T. In general, v k  need not be invariant with 
respect to the whole line group L; hence in the subgroup method-which we utilise 
in the present paper-one replaces L by Lk, the maximal subgroup of L leaving Vk 
invariant. (If L is of L+ type, L~ = L; if L = L- = L' + (R-IO)L+ ,  then Lk = L for k = o 
and k = r / a ,  and Lk = L' otherwise.) The reps of Lk determine systematic band 
degeneracies, band touchings at the Brillouin-zone edges etc; the remaining symmetry 
elements (including the time reversal) impose star degeneracies (BoioviC and 
BoioviE 1981, to be referred to as 111). Since Lk is also a line group, its reps can 
be easily selected out of tables of BoioviE et al (1978), BoioviC and VujiEiE (1981) 
(to be referred to as I and 11, respectively), but one still has to deal with infinite arrays 
of matrices or character components. 

In this paper we prove that in all mentioned applications it is sufficient to consider 
the set K of coset representatives of T in Lk; the number of elements of K is finite 
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(in fact, quite small for real polymers), hence the symmetry assignation can readily 
be automatised. 

2. Relevant subset of Lk 

The elements of a line group Lk are of the form (Rlv + t )  where R is a proper or 
improper rotation, Os U < 1 and t = 0, il, *2, . , . (cf LG). Our results are based on 
the following lemma. 

Lemma. Let kD be a representation (in general, reducible) of Lk in vk; then 

kD(Rlv + t )  = exp(ikta)kD(Rlv) (1) 

for every (R lu + t )  E Lk. 
The proof of this statement is straightforward but somewhat lengthy; we sketch 

it in the appendix. Let K denote the set {(R Iu )  I (R \ U )  E Lk} of coset representatives 
of T in Lk ;  then (1) implies the following theorem. 

Theorem 1. Two reps kD and kDm of Lk in vk are equivalent iff kx(Rlu) = k ~ m ( R l v )  
for every ( R  Iu)  E K. 

Let [RIu + t ]  denote the symmetry operator defined in V by [Rlv + t , ] f ( r ) =  
f[ (R /U + t ) - ' r ]  where f ( r )  E V. To determine the symmetry labels of a given energy 
level EA(k)  it is sufficient, in view of theorem 1, to represent the operators [Rlv], for 
(RIu)EK,  in an eigenbasis belonging to EA(k)  and to compare the traces to the 
tabulated ones, kXm(RIU). Hence K conveys all the relevant information. The same 
fact is observed when one decomposes a reducible representation kD of Lk in v k .  

Let Z' denote a direct sum and - the equivalence of representations; then we have 
the following theorem. 

Theorem 2. Let k D  - Z' n " k D  " ; then 

where k X  and k ~ m  denote the traces of kD and kDm, respectively. Notice that 
summation in (2) runs over only IKl elements. 

To prove this statement, let us multiply both sides of kX(RIV + t )  = I;, n"kX"(R1u + t )  
by kX"(RIv+t)* and average over Lk; in view of the above lemma it reduces onto 
the average over K, and (2) follows. 

To derive selection rules for different processes, one has to reduce Kronecker 
products of reps of Lk. It is not difficult to check that, in view of (11, 
klDml(Lk)@kzDmz(Lk) is a representation of Lk (equal to the smaller of Lkl, Lkz) in 
Vk,wherek = k l + k 2 + 2 7 r / a i f - 2 . r r / a < k l + k 2 s - . r r / a , k  =kl+k2i f - . r r /a<-k1+k2s  
7r/a and k = kl + k2 - 27r/a if I r / a  < kl + k2 s 27r/a. Hence one can apply (2), and 
this considerably facilitates derivation of selection rules. In particular, the wavevector 
selection rules are immediately obtained: 

($kl, dq$kz) = o unless kl = q + k2 where = means 'equal mod(27rla)'. 
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Finally, dealing only with K,  one can construct symmetry adapted bases (SAB'S) 
in V k ,  in view of 

where d is the dimension of kDm. Namely, [R Iv + f l f k  ( r )  = [R Iv][Elt]fk ( r )  = 
[RID] exp(iktu)fk(r) for everyfk(r)E V k ,  so that [Rlv +t]=exp(iktu)[RIv] (in V k )  for 
every (Rlu + t ) ~  Lk and (3) follows in view of (1) and lLkl= IT1 + IKI. 

3. Conclusions 

Line-group theoretical considerations can be efficiently implanted into computer 
programs for electron band-structure calculations on polymers and quasi- 1D solids, 
since it is sufficient to deal explicitly with only few symmetry elements. Considering 
the set K of coset representatives of T in Lk, one can label the energy bands and 
derive SAB'S, selection rules and compatibility relations. 

A few remarks might be in order. First, further reductions are visible in some 
cases: (i) for one-dimensional reps, generators of Lk are sufficient; (ii) for L' type 
line groups, kDm(R(u)=exp(ikva)Dm(R), cf I, etc. However, dealing with K in 
computer applications one retains-on the account of negligible increase of numerical 
work-uniform treatment of every rep of every line group, as well as maximal 
conceptual simplicity. 

Finally, notice that all the results given here apply also to vibration branches, 
exciton bands etc, since the corresponding Hamiltonians also commute with L. 
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Appendix 1 

To prove the Lemma, let us first note that if (1) is true for a certain representation 
kD of Lk it is also valid for any other representation kG equivalent to kD, Namely, 
if kG(R 1 0  + t )  = P-'kD(R lv + t)P for some non-singular matrix P, then kG(R It, + t )  = 
exp(iktu)P-lkD(R lu)P = exp(iktu)kG(R Iv) .  Thus without any loss of generality we 
can consider only the representations actually decomposed into irreducible blocks, 
the latter being in the 'standard' form given in I and 11. If (1) is true for the reps kDm 
it is also valid for any nmkDm; hence it remains to analyse each type of the reps 
of Lk. We proceed to that now, assuming familiarity with I and 11, omitting the 
unnecessary indices and choosing U for length unit, so that -T < k s T. 

(i) If Lk is of L+ type, one has kD(Rlu+t)=exp[ik(v +t)]D(R)  and (1) follows. 
(ii) If Lk is of L- type and k = O  one has oD(RIu + t )  =oD(R) ;  (1) is true. 
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(iii) If Lk is of L- type and symmorphic, then U = 0 and for k = 7~ one has 
a ( R l t )  = ( - l ) rD(R) ;  ( 1 )  is fulfilled. 

(iv) If Lk is of L- type and non-symmorphic, if k = 7~ and Jl(L-JL*) = d ( L + ) ,  
i.e. if ,,.D subduces onto a rep d of L' (which is an order two subgroup of Lk), one 
has ,,.D(R'lu + t )  = ,,d(R+lv + t )  = (-l)r,Jl(R+lu) and either 

~ ( R - R ' I - u  - t )  = ,,d(R'lu + t )  = (-1)'J3(R-R+l-u) 

or 

a ( R - R + ( - u  - t ) =  --J(R+lU + t ) =  ( - l ) r , J l ( R - R + ~ - u )  

so that (1) is true in either case. 
(v) The last possibility is that Lk is of L- type, non-symmorphic, k = 77 and 

where d (as well as 2) is a rep of L+; (1) is evidently valid in this case also, and 
the lemma is proved. 
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